Vectors and Coordinate Systems

3.1 Vectors

3.2 Properties of Vectors

Exercises 1–3: Draw and label the vector sum $\vec{A} + \vec{B}$.

1.

2.

3.

4. Use a figure and the properties of vector addition to show that vector addition is associative. That is, show that

$$(\vec{A} + \vec{B}) + \vec{C} = \vec{A} + (\vec{B} + \vec{C})$$

Exercises 5–7: Draw and label the vector difference $\vec{A} - \vec{B}$.

5.

6.

7.

8. Draw and label the vector $2\vec{A}$ and the vector $\frac{1}{2}\vec{A}$.

9. Given vectors \vec{A} and \vec{B} below, find the vector $\vec{C} = 2\vec{A} - 3\vec{B}$.

3.3 Coordinate Systems and Vector Components

Exercises 10–12: Draw and label the x- and y-component vectors of the vector shown.

10.

11

12.

Exercises 13–15: Determine the numerical values of the x- and y-components of each vector.

13.

14.

15

$$A_{\chi} =$$

$$B_x =$$

$$C_{\cdot \cdot \cdot} =$$

$$A_{v} =$$

$$B_{\nu} =$$

$$C_{v} =$$

16.
$$A_x = 3$$
, $A_y = -2$

$$17. B_x = -2, B_y = 2$$

$$B =$$

$$18. C_r = 0, C_y = -2$$

$$C =$$

3.4 Vector Algebra

Exercises 19–21: Draw and label the vectors on the axes.

19.
$$\vec{A} = -\hat{i} + 2\hat{j}$$

$$20. \vec{B} = -2$$

$$21. \vec{C} = 3\hat{i} - 2\hat{j}$$

Exercises 22–24: Write the vector in component form (e.g., $3\hat{i} + 2\hat{j}$).

22.

$$\vec{A} =$$

$$\vec{R} =$$

$$\vec{C} =$$

25. What is the vector sum $\vec{D} = \vec{A} + \vec{B} + \vec{C}$ of the three vectors defined in Exercises 22–24? Write your answer in component form.

Exercises 26–28: For each vector:

- Draw the vector on the axes provided.
- Draw and label an angle θ to describe the direction of the vector.
- Find the magnitude and the angle of the vector.

$$26. \vec{A} = 2\hat{i} + 2\hat{j}$$

$$27. \vec{B} = -2\hat{\imath} + 2\hat{\jmath}$$

28.
$$\vec{C} = 3\hat{i} + \hat{j}$$

$$A =$$

$$C = \frac{1}{2}$$

$$heta=$$

$$heta=$$

Exercises 29–31: Define vector $\vec{A} = (5, 30^{\circ} \text{ above the horizontal})$. Determine the components A_x and A_y in the three coordinate systems shown below. Show your work below the figure.

29.

30.

31.

$$A_{x} =$$

$$A_{y} =$$

$$A_x =$$

$$A_y =$$

$$A_x =$$

$$A_{v} =$$